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Abstract

Modern software development often requires robust, secure programming languages like
Rust or Go. However, the code complexity introduced by Rust makes it challenging to
reverse engineer the code. A common problem is Rust’s ownership and borrowing model
which complicates reverse engineering by making it difficult to monitor and comprehend
memory allocations and deallocations during binary analysis. In contrast, C' is known for
producing easily readable decompiled code due to its straightforward memory management
and simpler syntax. This thesis shows the shortcomings of the existing Rust reversing
tools, and introduces Rusteronies, a collection of scripts designed to improve the process
of reverse engineering Rust binaries. The tool set allows reconstructing both static and
dynamic strings in Rust by searching the read-only memory and identifying the values of
registers. These scripts offer better performance and accuracy compared to the Ghidra
inbuilt analyzer, making the reverse engineering of Rust binaries more efficient and
comprehensive. Furthermore, it also includes a script that can reconstruct macros, such
as the simple printin, print, and fmt functions.






Kurzfassung

Die moderne Softwareentwicklung ist héufig auf robuste, sichere Programmiersprachen
angewiesen, zu denen unter anderem Rust und Go zéhlen. Die durch Rust eingefiihrte
Codekomplexitit erschwert es jedoch, den Code durch Reverse Engineering zu analysieren.
Ein h&ufig zu beobachtendes Problem ist das Qwnership- und Borrowing-Modell von
Rust, welches das das Reverse Engineering erschwert, da das Uberwachen von memory
allocations and deallocations wahrend binary analysis mit Schwierigkeiten verbunden ist.
Im Gegensatz dazu ist C' dafiir bekannt, dass es aufgrund seiner unkomplizierten Memory-
Management-Funktionen und einer einfacheren Syntax leicht lesbaren dekompilierten Code
erzeugt. Die vorliegende Arbeit zeigt die Limitierungen der gegenwértig verfiigbaren Rust-
Reverse-Engineering-Tools auf und stellt Rusteronies vor, eine Sammlung von Skripten,
die den Prozess des Reverse Engineerings von Rust-Binaries verbessern sollen. Die Skripte
ermoglichen die Rekonstruktion sowohl statischer als auch dynamischer Strings in Rust.
Dazu wird der read-only Speicher durchsucht und die Werte von Registern identifiziert.
Die Skripte bieten eine optimierte Leistung und Genauigkeit im Vergleich zum integrierte
Ghidra-Analyzer. Zudem beinhaltet das Paket ein Skript, welches die Rekonstruktion
von Makros ermoglicht, darunter einfache Funktionen wie printin, print und fmt.
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1. Introduction

Nowadays, Rust is gaining popularity among developers because of its emphasis on memory
safety, concurrency, and performance. One of the key features that distinguishes Rust
from other programming languages is its robust type system, which makes it possible to
write safe and efficient code without sacrificing performance. However, the same features
that make Rust popular with developers also create challenges for reverse engineers
attempting to analyze Rust binaries due to the complex decompiled code produced by
reverse engineering tools such as Ghidra.

Today’s cybersecurity techniques rely on software reverse engineering. This process allows
them to investigate software binaries, find vulnerabilities, understand the system, and
improve the overall system security. The growing popularity of Rust, combined with the
challenges that come with it, is increasing the amount of malware being written in Rust.
This highlights the importance of the lack of tools specifically designed to reverse engineer
Rust binaries.

One of the first steps in reverse engineering binaries is to look at the defined strings. While
in some programming languages strings are easily reconstructed by reverse engineering
tools, existing methods and scripts for recovering strings from Rust binaries often fail
to effectively deal with the challenges that arise from Rust strings such as ownership
semantics and the lack of a terminating null byte at the end of each string. Another major
challenge in reverse engineering Rust binaries is the powerful compile-time code generation
through macros. Unlike simple function calls, macros are expanded at compile-time,
making it difficult to reconstruct them. As a result, current reverse engineering tools are
unable to identify and analyze macros within Rust binaries.

[Listing 1] and |[Listing 2| provide a clear example of the large expansion of Rust macros at
compile-time, converting the short source code into a much larger block of decompiled
C-code. The example is the #[tokio::main] macro, which simplifies asynchronous
programming in Rust. Examining the decompiled output includes many function calls,
variable declarations, and exception handling mechanisms. Furthermore, the decompiled
code produces detailed functionality for the resource management for example by calling
core: :ptr::drop_in_place<> for local variables.
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undefined [16] __rustcall hello::main(void)

undefined auVarl [16];
undefined local 178 [8];

VAR 74
VAR 74
/¥ ... ¥

undefined local_d0 [181];
undefined2 local_1b;

tokio::runtime: :builder: :Builder: :new_multi_thread(local_d0);
local_1b = 0x101;
/% try { // try from 00111ad5 to 00111ae2 has its CatchHandler @ 0011ibac */
tokio::runtime: :builder: :Builder: :build(local_120,local_d0);
if (local_120[0] != 2) {
local_138 = local_e0;
uStack_134 = uStack_dc;
uStack_130 = uStack_d8;
uStack_12c = uStack_d4;
local_148 = local_fO0;
uStack_144 = uStack_ec;
uStack_140 = uStack_e8;
uStack_13c = uStack_e4;
local_158 = local_100;
uStack_154 = uStack_fc;
uStack_150 = uStack_£8;
uStack_14c = uStack_f4;
local_168 = local_110;
uStack_164 = uStack_10c;
uStack_160 = uStack_108;
uStack_15c = uStack_104;
uStack_170 = uStack_118;
uStack_16c = uStack_114;
/% try { // try from 0011121 to 00111b31 has its CatchHandler @ 00111b8c */
auVarl = tokio::runtime::runtime::Runtime::block_on(local_178,0,%PTR_s_src/main.rs_00198bc0) ;
/% try { // try from 00111632 to 00111b3f has its CatchHandler @ 0011ibac */
core: :ptr: :drop_in_place<>(local_178);
core: :ptr: :drop_in_place<>(local_d0);
return auVari;

}
/# try { // try from 00111b67 to 00111689 has its CatchHandler 0 00111699 +/
/# WARNING: Subroutine does mot return */
core::result: :unwrap_failed();
}

Listing 1: Macro expanded at compile-time

use std::error::Error;

#[tokio: :main]

pub async fn main() -> Result<(), Box<dyn Error>> {
0k(O)

}

Listing 2: Original rust code

The following chapters explore Rust reverse engineering and string analysis through four
research questions.

1. How can the recovery of strings in Rust binaries be improved? The goal
is to recover as many meaningful strings as possible from Rust binaries, aiming to
outperform existing analysis tools like Ghidra’s RustStringsAnalyzer.

2. Can external factors influence script performance? The accuracy of the
scripts should not vary depending on the underlying architecture. As the length



of a string might be encoded in the instructions of a program directly, trying to
recover all strings might involve architecture specific information. It is therefore
necessary to ensure that scripts perform the same way on different architectures.

3. How can common macros be reconstructed? The script should be able
to reconstruct commonly used macros like format!, print!, and println!. The
underlying rules for these macros are concise, but not trivial to understand in
decompiled code. This makes them interesting targets for attempting reconstruction.

4. How many macros can the script detect/reconstruct? Although the print-
macros are commonly used, some real-world binaries might not use them, resulting
in less detected macros. Reconstruction should detect the presence and attempt to
reconstruct macros in real-world Rust binaries.

This thesis aims to answer the research questions by analyzing language specific artifacts
in Rust programs. The aim is to gain a better understanding of the underlying structures
and behaviors of Rust codebases. This is achieved by developing scripts to aid in Rust
reverse engineering.

The thesis starts off with which provides the necessary background information
for understanding the context of reverse engineering and the pain points of the Rust
programming language. In existing research and tools are discussed to find
ideas and opportunities for improving the state-of-the-art in reverse engineering Rust
programs. In Rusteronies, a set of scripts were specifically programmed for
reverse engineering Rust programs. These methods include string representation analysis,
applying function ID analysis, and macro analysis with tools such as ANGR. In
evaluates the developed scripts using a series of case studies and comparisons. The setup
of the experiments, including the datasets and tools used is discussed followed by the
presentation of the results. Finally, wraps up the thesis by summarizing the
key findings and identifies potential areas for future work.






2. Background

This chapter provides an overview of the needed background material necessary to
understand the thesis. First, this text introduces Rust as a programming language and
highlights its key features relevant for Following that, Ghidra, a reverse
engineering tool, is introduced including an in-depth analysis of its various functionalities
of how it aids the process of binary analysis. Finally, ANGR, a Python tool for symbolic
execution, is presented.

2.1. Rust

Rust [I], released in 2015, is a modern programming language developed by Mozilla
Research which focuses on safety, performance, and concurrency. The programming
language mainly wanted to enforce strict memory management rules to prevent daily bugs
in a programmers life which occur in other languages such as C and C++. For instance,
common issues are bugs due to dangling references, use after frees, double frees, and
buffer overflows which are all checked by the Rust compiler.

Rust’s ownership and borrowing model is intended to stop data races and memory problems
which complicates reverse engineering. It is difficult to monitor and comprehend memory
allocations and deallocations during binary analysis due to the concept of ownership,
where variables have exclusive access to their data. is a simple program which
creates a string and borrows the value and prints Hello World in the end. Although Rust
promotes stack allocation, heap allocation is required. Therefore, Rust allocates memory
for variables. For example, s1 owns the string Hello. When s2 is assigned a reference
(&) to s1, it borrows the ownership without actually resulting in s1 being dropped with
the drop trait. This ensures that s1 remains valid. However, removing the reference from
s2 would cause s2 to take ownership of s1, which would violate Rust’s borrowing rules
and cause a compilation error by attempting to use s1 after it has been moved. This is
very different from C, where such code would result in no compilation errors but cause
problems which lead to undefined behavior. Rust also has string slices which provide a
way to reference parts of a string without taking ownership of the entire string.
shows how a string slice gets defined.

In Rust, there are two types of macros: declarative macros and procedural macros.
Declarative macros are executed during compilation and generate code based on predefined
patterns and rules. An example of a declarative macro is the one from the standard
library println!, which is identical to the printf function in C. The other feature is
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fn main() {
let s1 = String::from("Hello");
let s2 = &si;

println! ("{} World!", s1);

Listing 3: Hello World program in Rust with ownership and borrowing models

let s = String::from("Hello, world!");
let slice = &s[0..5]; // String slice referencing the first 5 characters of s

Listing 4: String slices in Rust

called procedural macros. These macros allow code to be generated during compile time
based on custom annotations or attributes. Procedural macros enable developers to add
new syntax and constructs to the language that would not be possible with declarative
macros alone. Unlike declarative macros, which perform pattern-based transformations on
source code, procedural macros work with abstract syntax trees (ASTs) and can generate
entirely new code [2]. For example, [3] provides a tutorial for a practical example of using
a procedural macro in Rust for asynchronous programming.

2.2. Ghidra

Ghidra [4] is an open-source reverse engineering tool that was developed by the National
Security Agency (NSA). With Ghidra one can analyze binaries, making it possible to
understand the underlying structure when no source code is available. One of the main
features is the decompiler interface where the binary code is displayed as human-readable
C code. Compiling results in a binary which can be imported into Ghidra. After
letting Ghidra auto-analyze the binary, it manages to find the main function and shows
the decompiled code as shown in

When analyzed in Ghidra, the decompiled code has almost an identical structure as the
source code, with the printf function call for printing the message. There is only one
noticeable difference between the two. In the decompiled output from the main
function is declared with void as parameter and returns an undefined8 type, which in
other words is in Ghidra a placeholder for an unknown data type. These types have
a common occurrence in the decompilation process because Ghidra is not capable of
accurately reconstructing the exact return type of a function.
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#include <stdio.h>

int main() {
printf ("Hello, World!");

return O;

}

Listing 5: Simple Hello World program in C

undefined8 main(void)

{
printf ("Hello, World!");
return O;

Listing 6: Decompiled C Hello World program in Ghidra

Looking at the decompiled code of a Rust Hello World program is more challenging. The
Rust language is well known for its memory safety, concurrency, lifetime and borrowing
models. However, these factors add layers of complexity when attempting to reverse
engineer the binary. For example shows a simple Hello World program written in
Rust. shows the decompiled code of the same program, revealing the additional
lines of decompiled code generated by Ghidra. One feature that draws attention is
the extra lines of code for variable declarations. At the end of the decompiled code
the final function call is to std::io::stdio:: print with the string pointer saved in the
local 30 variable to print the output. It is also visible how Rust approaches the memory
management and frequent use of pointers. Ghidra v11 supports demangling Rust symbols,
analyzing strings, and also redefining them for Rust binaries.

fn main() {
println! ("Hello World!");
}

Listing 7: Simple Hello World program in Rust
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void hw::main(void) {
undefined8 local_30 [2];
undefined *#*local_20;
undefined8 local_18;
char *local_10;
undefined8 local_8;

local_20 = &PTR_s_Hello,_world!_0014b350;
local_18 = 1;

local_30[0] = 0;

local_10 = "Hello, world! ";

local_8 = 0;
std::io::stdio::_print(local_30);
return;
}
Listing 8: Decompiled Rust Hello World program in Ghidra
2.3. ANGR

ANGR [5] is a Python library based on symbolic execution, which is used for binary
analysis. Symbolic execution executes the binary symbolically (as the name implies)
rather than with specific input values. During execution, ANGR saves the program’s state
and propagates symbolic values, generating a symbolic execution tree that represents all
possible paths through the program and allows users to explore different execution paths
under certain conditions. For example, by using constraint solving one can specifically
search for a value in the binary. Every other value would not satisfy the constraint and
therefore will not be considered. It is also possible to check which value a specific variable
can hold at a certain part of the program. Overall, with the power of ANGR it is possible
to inspect and analyze certain memory values without needing to start the program.



3. Related Work

As Rust grows in popularity as a systems programming language, there is a growing
demand for effective tools and approaches for reverse engineering Rust programs. This
goes hand in hand with a growing body of research into how Rust can be effectively reverse
engineered, together with lessons learned from other modern programming languages, e.g.
Go. This section provides a brief overview of the prior work in these areas. The conducted
research includes non-academic sources due to the novelty of the topic in addition to
academic references and tools available.

3.1. Rust Analysis

Due to the sophisticated language features and robust memory safety guarantees, Rust
binaries provide particular difficulties and pain points making it harder to reverse engineer.
The blog “Rust Binary Analysis: Feature by Feature” [6] provides an in-depth discussion
of the significant challenges of reverse engineering Rust binaries due to their complex
language features and powerful memory safety guarantees. This examination goes into
numerous areas of reverse engineering by studying sample programs and closely examining
disassembly, with a special emphasis on discovering Rust-specific features. The analysis
highlights the complexity required to understand and analyze Rust binaries, such as
compiler optimizations, string representations, and memory management.

While Giordano’s blog post [7] presents a brief analysis that focuses on important topics
such as destructuring, loop unrolling, and arrays by looking at the disassembly, Zeropio’s
post [8] analyzes the features by looking at the same program written in C and the Rust
programming language, and explains the differences while reversing them. All of these
blog posts have in common that they explore Rust features by writing their own small
sample programs and reverse engineer them using a reverse engineering tool. Unlike
the rest, this blog “Digging through Rust to find Gold: Extracting Secrets from Rust
Malware” [9] looks at the pain points from a different angle. It starts with a basic analysis
of the calling convention and strings. It then applies these steps to an unknown Rust
malware. To do this it also uses a Ghidra script called RustDependencyStrings.py [10],
to find the crates being used in the binary making it possible to find the dependencies
specified by the malware developer.

In contrast, GhidRust [11], 12], an open-source project available on GitHub, provides
a Ghidra plugin to analyze Rust binaries. GhidRust determines whether a binary
was written in the Rust programming language or not and translates Ghidra’s C-style
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decompiled code into Rust code. The author decided to not add a Demangler to the
plugin since Ghidra already performs demangling on Rust binaries. Nevertheless, the
integrated Demangler does not always work and could potentially make it more difficult
and time-consuming to reverse. As a result, another open-source tool published on
GitHub called DemangleRust [13] focuses on demangling the symbols by using the Rust
v0 mangling scheme [14]. By combining GhidRust and DemangleRust, analysts may
produce a more precise and understandable representation of Rust symbols, improving
the process of reverse engineering.

During development of this thesis project, the NSA released their own Rust String support
[15] and their own Rust Demangler [16] with Ghidra 11. The problem was addressed using
a recursive approach. The main function of the script recurseString first determines
the maximum string length up to a specified reference or the maximum length allowed. If
the new length is greater than zero, it creates a new char array of that length and the
string. If the new length is less than the maximum length, the function recursively calls
itself using the remaining string.

In comparison to reverse engineering or binary analysis tools where the source code is not
available, there is a lot of research and tools which focus on the static and dynamic analysis
when the source code is available. The approaches these tools use could potentially be
used to simplify reverse engineering as well. Rust has an unsafe tag [17] that allows code
execution that is not allowed by Rust’s safety rules such as dereferencing a raw pointer.
Unsafe code leads to bugs, security vulnerabilities, and memory safety issues that are
difficult to detect by looking at the code or reverse engineering the binary. Clippy [18]
is a resource for finding simple programming problems and improving code quality by
printing out different levels of warnings to ensure code safety. Another approach to ensure
safe code uses Miri [19], an experimental Rust interpreter, that compiles source code
and runs the generated intermediate representation in an interpreter to find undefined
behavior and memory leaks. While Miri uses an interpreter to run the MIR, making it a
dynamic analysis tool, Clippy only analyzes the source code statically. Finally, another
tool called Rudra [20] is a system for finding memory safety bugs in Rust code. Unsafe
code blocks are usually checked, and the goal of Rudra is to eliminate them and find
security problems. While Mira and Rudra are tools for specifically analyzing unsafe code,
Clippy can be useful for new Rust developers because of the feedback it provides to help
users to learn Rust’s idiomatic standards.

3.2. Go Analysis

While the analysis of Rust binaries is the main focus of this thesis, it is also worthwhile to
examine and contrast similar techniques used with Go. Many of the difficulties encountered
in Go binary analysis are also present in Rust binaries such as binary size and unusual
string handling. Go and Rust binaries have large sizes due to code duplication and static
compilation. Go-Clone [2I] is a tool that detects copy-pasted or duplicate code in Go. To

10
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achieve this the authors use source code analysis, creating labeled semantic flow graphs
(LSFGs), neural network training, and user interaction. The important step is that the
source code is converted to LLVM Intermediate Representation (IR) [22] and for each
function an LSFG will be created showing the structure and the flow behind the function.
It then compares multiple iterations of the same project and detects clone pairs. Using a
deep neural network model Go-Clone can find repeating patterns and generate a list of
cloned code which helps to reduce binary size.

Moreover, there is a different set of Go reversing tools [23] published on GitHub that
make the process easier. The first tool recovers the function names from stripped binaries.
The other two scripts identify string structures (static and dynamic) because Go and
Rust both have non null-terminated strings. Instead, a pointer is stored which points to
the actual string, in addition to the string length. As a result, there is no clear sign that
a string has ended or started. Thus, recovering strings from Go/Rust binaries is harder.

3.3. Other Analysis Methods

In addition to the Go reversing tools, researchers have also explored potential applications
of LLVM, such as developing code property graphs and how metamorphic malware
developers evade signature-based detection. Furthermore, LLVM is widely used for
optimization in RustC.

Kuechler et al. [24] investigated the use of LLVM in the creation of code property graphs
using LLVM intermediate code. While the study focuses on software dependencies, the
methodology and insights gained from generating code property graphs could be applied
to the analysis of Rust binaries and their dependencies providing reverse engineers with
a complete picture of Rust programs and their interactions with external libraries or
modules. On the other hand, Dube et al. [25] conducted research on malware obfuscation
tactics with the primary goal of protecting software intellectual property. The authors
discovered that after obfuscation, the binaries are difficult to reverse using popular
tools such as IDA (Interactive Disassembler) [26]. While their research was not directly
related to Rust binaries, it provided useful insights into obfuscation techniques that could
potentially be adopted and used for Rust-based malware, making reverse engineering
more difficult and requiring complex analysis techniques.

The size of Rust binaries is remarkably larger compared to C binaries, potentially resulting
in a large amount of instructions that introduce security risks which could be exploited
by attackers and increases the amount of code that needs to be reverse engineered.
To address this concern, researchers have developed different tools aiming at reducing
the binary size. One such tool is TRIMMER [27] which focuses on code debloating by
analyzing user-provided data to figure out unused functionality, thereby decreasing the
final binary size. In comparison, Chisel [28] uses a different approach by performing
reinforcement learning to debloat programs. It takes two input parameters, the original
binary and a specification of its functionalities and outputs a debloated program including

11
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the specification. Whereas, Nibbler [29], another noteworthy tool designed to optimize
shared libraries by spotting and deleting unused functions within shared libraries.

Similar to Go-clone, there is existing research in the area of clone detection and binary
similarity not limited to Go binaries. Luo et al. [30] introduce VulHawk [31], a cross-
architecture binary code search approach based on an intermediate representation function
model, natural language processing, and graph convolutional networks. The goal is to
identify vulnerabilities caused by code reuse in IoT firmware images. Another tool
BinFinder developed by Qasem et al. [32] is based on a neural network to find differences
and similarities in disassembled code. For comparison, BinDiff [33] is an open-source tool
that also provides the same functionality without using machine learning. According to
Marcelli et al. [34] machine learning is a critical aspect to find binary similarities. As a
matter of fact the strength of machine learning lies in analyzing and comparing complex
patterns within code. In contrast to machine learning methods, reverse engineering tools
usually implement simpler and more performant approaches to detect function clones.
Ghidra uses the .fidb database [35] to store function signatures, while Radare2 uses the
.sdb database. The way function ID works in Ghidra is that if the function hashes of for
example the OpenSSL library are known, the program can recognize those functions. On
the other hand, IDA Pro uses F.L.ILR.T. [36] function signatures. FLIRT stands for Fast
Library Identification and Recognition Technology which allows IDA to detect standard
library functions. Overall, function clone- and binary similarity detection increase the
usefulness and readability of the generated disassemblies.

12
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As stated in [chapter 3] prior research has uncovered many pain points and difficulties
related to Rust reverse engineering. While this work offers insight and techniques for
analyzing Rust binaries manually, there is still room for improvement with reference to
development of automatic tools.

The calling convention in Rust is noticeably different from C binaries. When loading a C
binary into a reverse engineering tool the main function is located by checking the entry
point which is _start in Ghidra. From there, the __libc_start_main function is called,
which in turn calls the actual main function with the required arguments. However,
this process differs in Rust. Even when following the exact same steps, the real main
function cannot be found in Rust. The __libc_start_main function calls Rust entry
point std: :rt::lang_start_internal function which then proceeds to invoke the actual
main. Rust uses the default calling convention on x86_64 Linux (SYSTEM-V) which already
passes most of the arguments in the registers. In some cases Rust creates structs on the
stack and passes their addresses in the registers. However, a stable internal Rust ABI
does not exist since Rust programs are compiled statically and thus do not require a
stable ABI.

Rust utilizes LLVM for compiler optimization. If the binary is built with the -release
flag, the debugging symbols are removed, resulting in a faster program runtime and
smaller binary size. The .toml file allows adding customized compile-profiles i.e. the
strip option [37] can be used to strip symbols from the binary as shown in

[profile.release]
strip = "symbols"

Listing 9: Stripping symbols from binary

In the debug build, the operation that significantly decreases performance is frequently
moving memory between registers and stack. Furthermore, more checks are performed on
the code during the debugging phase, including the detection of integer overflows. Upon
inspection of the same binary, it is apparent that different functions are called when it is
compiled in debugging mode versus in release mode. For example, in the release build
the function lang_start_internal is responsible for calling the main program function,
while in debug mode the function name is slightly different: lang_start<()>.

13
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4.1. String Representation

In C, strings are represented using null-terminated character arrays. A null-byte denotes
the end of the string making it simple for reversing programs like Ghidra to find the
string’s start address and reading characters up until the null-byte. Rust, on the other
hand, has a more intricate string representation because of its ownership system and
UTF-8 encoding. In Rust there are two different types of strings: string slices which do
not have ownership and owned strings. String slices (&str) are references to an existing
string, and it does not possess ownership of the data to which it refers. They have a
defined size and are stored in memory as a reference to a range of bytes. Owned Strings
(String) are growable strings that own their data and are represented by the String type
[38]. Unlike C strings, Rust explicitly records the string’s length, making length retrieval
possible in constant time. The string representation in Rust has benefits for memory
safety and language features, but it makes reverse engineering more difficult. Reverse
engineers must rely on the stored length information to determine the string’s boundaries
as there is no null-terminated byte to indicate the string’s end.

Ghidra is an open-source tool for reverse engineering developed in Java that offers an
extensive AP [39]. This allows users to extend the functionality of Ghidra with custom
scripts which can be written in either Java or Python. To start writing a Ghidra script,
the first step is to set up a development environment. The setup used in this thesis was
taken from the following blog post [40]. Also, Java 17 was used as the programming
language for the scripts, which were first written for Ghidra v10.3.2. In December 2024
with v11, Ghidra released their own RustStringsAnalyzer |[15] and RustDemangler [16].
The RustStringsAnalyzer works similarly to the dynamic script. Later in the
results of the RustStringsAnalyzer will be compared with the developed scripts.

Among the problems mentioned above, the easiest and most straightforward one to
approach was improving Ghidra’s string representation of Rust strings. The first step
consisted of creating tailored Ghidra scripts that analyze strings in Rust binary executables.
The problem was approached by treating the string occurrences as “static’ and “dynamic”,
similar to scripts for executables of the Go programming language [23], which the scripts of
this thesis were based on. In order to discover “static” strings, string structures are utilized.
These structures consist of a char* pointer and a length, and they are stored in a specific
data section (.rodata) during the compilation process shown in In contrast,
the “dynamic” strings does not necessitate the existence of specific string structures.
Instead, the pointer and length of the string are directly stored in the instructions within
the .text section like in These encoded instructions then reference the string
contents located in the .rodata data section.

Simply porting the Python scripts for analyzing strings in Go binaries was not sufficient
to make them work for Rust. Additionally, these scripts disregard a number of edge cases
which were found through manual analysis of the annotations generated by the script. The
first improvement implemented was getting the string address. The Go script obtains the
string’s address by directly converting the integer offset from the string address pointer
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PTR_s_/rustc/90c541806£23a127002de5b40_0

00151£f50 7d 42 14 addr s_/rustc/90c541806£23a127002de5b40_001442
00 00 00 = "/rustc/90c541806£23a12700
00 00

00151£58 4f 00 00 int 4Fh
00

Listing 10: Static strings in Ghidra

00119f2a 48 8d 15 LEA  RDX, [PTR_s_/cargo/registry/src/index.crat

1f 83 03 = 00144625
00

00119£31 be 2b 00 MOV  ESI,Ox2b
00 00

Listing 11: Dynamic strings in Ghidra

to hexadecimal, without utilizing the address space which refers to the total amount of
memory allocated for all possible addresses [41]. This approach increases the number of
operations, while on the other hand the getAddress function combined with the address
space and the identifier minimizes the computational overhead. The next problem was the
printable check. The Python script checks for printable ASCII characters in a hardcoded
predefined range. This check can fail for Rust strings because they are UTF-8 encoded.
The approach used in this thesis was to decode the entire sequence of bytes as characters

using UTF-8 encoding like in

In the next step, the identified strings should be declared as the string data type in Ghidra.
According to the Go script, it is necessary to delete any previously defined data and
then redefine it. The FlatProgramAPI offers a function called removeData to accomplish
this. Despite implementing these changes, the script still threw a CodeUnitException
because of conflicts created by data being defined in an already-allocated
memory space. This exception additionally revealed multiple other edge cases.

One of the edge cases was observed through manual analysis about strings being truncated
or disregarded. There were two causes for these issues. If the pointer pointed to the
middle of a string, shown in the allocated memory for the full string length
needed to be cleared. This was achieved by replacing getData with getDataContaining.
The difference between these two is that the first one gets the AddressSpace data at the
specified address and the second one returns the data containing the specified address.
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public boolean isPrintable(final Address strAddr, final int length) throws
< MemoryAccessException {
final CharsetDecoder decoder = StandardCharsets.UTF_8.newDecoder();
final byte[] value = getBytes(strAddr, length);
final ByteBuffer buf = ByteBuffer.wrap(value);

try {
decoder.decode (buf) ;

}

catch(CharacterCodingException e) {
return false;

}
return true;
}
Listing 12: Check for UTF-8 printable characters
[ Conflicting data exists at address 0014827b to 0014834c ]

Listing 13: CodeUnitException due to data conflicts

If the string was divided, the entire block had to be cleared before creating any data
shown in Therefore, the length of the string was checked, whether its bigger
than one and then iterating over the full length of the string to be defined (represented
as AddressSet) and deleting the data.

Fixing these two edge cases also solved the data conflicts exceptions. In addition, Rust
uses UTF-8 encoded strings, hence creating the final string follows a different approach.
Unlike the Go script which uses createAsciiString to create an ASCII string and unlike
Ghidra’s own String Analyzer [I5] which uses a char array, createData is utilized to
create a StringDataType struct containing the string address, the length with the correct
Rust string encoding.

This is a very very very very very very very [ong s‘tring

Figure 4.1.: Edge case 1: Multiple string pointers pointing to different locations
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‘

Figure 4.2.: Edge case 2: String is split into smaller blocks

The methodology for searching strings “statically”, i.e. by searching for string structures
in .rodata, leaves many strings undiscovered that are not part of such string structures.
A large portion of strings in the binary does not have their associated length stored in
memory, but directly loaded into registers as immediate values, at the time when the
string is used. Go and Rust exhibit distinct patterns in disassembly to identify strings.
In the initial version of the script, only the x86_64 architecture was relevant. In Rust the

pattern to follow in assembly can be found in

LEA REG [addr] # String address
MOV REG OxXX # String length

Listing 14: Pattern for dynamic strings in x86 64 in Rust

Many strings were recovered simply by following this pattern. However, there were again
edge cases that must be taken into account. After analysis it was revealed that, in some
cases the string length is stored one instruction before the string address. In another
instance, it was observed that the length of the string was occasionally copied after a
brief sequence of other instructions. In some cases just checking if there was any memory
address put into the destination was not enough. Additional checks were needed such as
checking if the LEA instruction was followed by a pointer or if it loads a function address
or an address of executable code. To determine the length, several checks are needed.
First a MOV command followed by a register and a scalar is required. If these conditions
are met, a printable check is needed, just like for static strings, with the slight difference
that null bytes are ignored here. After finding the longest length, it gets stored in a
variable. If the string address found is undefined, the same steps are followed to create
the string structure as in the previous script, otherwise the address is skipped.

The end goal was to make the script architecture independent. Therefore, to accomplish
this task several changes were made. Instruction names cannot be used as a guide, as
they differ across architectures. The algorithm in checks each instruction and
the addresses of the references instead of searching for a LEA instruction. While manually
analyzing the code in Ghidra, there were a lot of pointers found that start with valid
UTF-8 printable characters. The dynamic string detected those as valid strings and
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redefined them, which caused some false positives. The solution to this problem was
to skip all pointers where Ghidra had previously defined data during its analysis steps.
Afterwards the same checks mentioned above can be performed to determine if a string
has been found.

final Address strAddr = instruction.getReferencesFrom() [0].getToAddress();

// If Ghidra has already defined a pointer there we skip
final Data data = getDataContaining(strAddr) ;
if (data != null && data.isPointer()) {

continue;
}
// Make sure that we don't load a function address/address of ezecutable code
if (getInstructionContaining(strAddr) != null) {
continue;
}
\ J

Listing 15: Algorithm for searching for string address

Furthermore, it was necessary to adjust the algorithm to find the length. Firstly, all
operands needed to be either registers or scalars and registers needed to be outputs.
Secondly, for each string address, the maximum length must be determined and stored.
The most convenient approach was to use a map that takes the string address as a key
and a list of possible lengths as a value. Lastly, the missing step is to iterate over the
map and pick the longest length for each string address and define the data.

The final problem encountered was losing the old string data when removing the already
fully defined data and replacing it with the new string data shown in the first drawing
in In this case, before deleting any data, the old data is saved and checked
if the data had any string value and where the original string was located. At the end
the previous string data is once again redefined, as shown in the bottom drawing in
To avoid false positives, the data is checked for non-UTF-8 encoded characters
prior to creating the final string and any strings shorter than length 1 are being skipped.
This fix has been implemented in both string scripts.
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This is the data for the old string

new s‘tf‘ing data

s‘tr‘imj 1 s‘tring b Stﬁng 3

Figure 4.3.: Redefining every split string

4.2. Function ID Analysis

When stripping a binary of symbols or function signatures, reverse engineers encounter
difficulties in detecting fundamental Rust functions from the standard library. The
concept of integrating a function ID database is to compare the function hashes in the
binary with those of the database while considering mnemonic and operand type. If
matches are found, the corresponding function signature is added to the binary.

At the time of writing there is no database that fully includes every standard library
function ID. This database is hard to obtain since to include every function ID a program
must use every single function. Rust compilers optimize functions out but they also clone
(monomorphize) trait generics and macros, so it is not possible to create a full database at
all. To create a custom function ID database, the thesis generates it from a non-stripped
binary rather than relying on user-generated function ID databases. During the analysis,
an issue was encountered where Ghidra was unable to recognize the loaded database. The
process of debugging this error proved to be time-consuming as Ghidra’s visual function
ID debugger listed the correct functions. Interestingly, other databases were successfully
added without any issues. After manually detaching the database and reattaching it, the
user-generated function ID databases functioned properly.

Function ID analysis offers multiple benefits. On one hand, it allows reverse engineers to
ignore library code, which they are not concerned with. On the other hand, it provides
additional insights into program functionality, enabling macro analysis. For instance, it
is possible to reconstruct the print and format macros by recognizing the underlying
functions. However, the mangled function name should incorporate typing information,
which is not extracted. Thus, it is necessary to manually analyze the typing information.
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4.3. Macro Analysis - ANGR

Since a human reverse engineer can reconstruct macros by comparing the macro rules
with the expanded, compiled code, it must be possible to reconstruct macros when their
macro expansion rules are known. However, there is no general solution for this problem
yet. As proof-of-concept this thesis demonstrates one possible solution with the print
and format macros.

ANGR 5] is an open-source platform primarily used for symbolic execution and binary
analysis. Symbolic execution involves code evaluation using symbolic variables, instead
of specific values, to represent program inputs and states. This technique allows reverse
engineers to explore different program execution paths without actually running the
program. ANGR [5] is only compatible with Python 3. Jython, which is used as a Python
interpreter in Ghidra, only supports Python 2 and installing packages is generally not
possible. In order to run Python 3 and additional packages, projects like Pyhidra [42],
Ghidrathon [43], or Ghidra Bridge [44] are required. First, Pyhidra seemed promising
but it was not possible to link it with the current Ghidra installation. The second
option Ghidrathon is not able to work with multiple threads, despite citing ANGR as a
motivating case for using Ghidrathon. After installing and attempting to import ANGR,
the import process fails and displays the following error message shown in

line 48, in <module>
signal.signal(signal.SIGINT, handle\_sigint)
File "/usr/lib/python3.11/signal.py", line 56, in signal
handler = _signal.signal(_enum_to_int(signalnum), _enum_to_int (handler))

ValueError: signal only works in main thread of the main interpreter

Listing 16: Error shown when trying to import angr

Upon further research there are many well-known issues listed on GitHub [45] that explain
the problems with using threads in Ghidrathon which leads to the same situation as the
built-in Jython since both are limited to what they can achieve. Thus, the last option
Ghidra Bridge [44] seemed to work after following the setup instructions in the readme
file.

In order to develop a methodology for recreating Rust macros, this thesis chose to work
with the format macros found in the Rust standard library. These are available to users
by calling print!, println! or format! and use the same functions internally. For this
thesis, the approach to reconstruct these macros therefore relies on first identifying the
main functions invoked by these macros. The first step is to iterate over each function
used in the program, looking for the cross-references of the print and format_inner
function. The next step contains finding out where the cross-references are located.
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Lastly, the entry points of those containing functions need to be stored. The steps have
been outlined in a pseudocode in Algorithm

Algorithm 1 Iterate over Functions

1: function ITERATE _FUNCTIONS(program):

2 for all function in program do

3 if function uses print or format inner then

4 cross_references < ||

5: for all reference in function do

6 if reference is a call to print or format inner then
7 cross_ references.append (reference)

8
9

end if
: end for
10: if cross_references is not empty then
11: entry points.append(function)
12: end if
13: end if
14: end for

15: end function

This process can be time-consuming, particularly when sending many messages back
and forth between the client and Ghidra Bridge server. One solution is to use Ghidra
Bridge’s bridge.remote_eval to gather all the data needed and then return it all at
once resulting in only one message sent. However, Ghidra Bridge seemed to return None
for the cross-references used. This led to a creation of a Java script that gathers the
information and writes them into a text document which then gets parsed by the ANGR
Python script. To inspect the program’s state, ANGR requires the function’s entry point
and follows the execution path until reaching the state at the function call’s address.
ANGR uses different offsets by default than Ghidra. In order for ANGR to work with the
Ghidra addresses, it is necessary to use the image base found in Ghidra as base_address

offset in ANGR.

While exploring the execution paths ANGR executes the existing function code which is
also very time-consuming. To avoid this, hooks can be used. Instead of following every
single function call it is possible to hook the function and run custom written code. This
has been used for the print to skip every function call and the __rdl_alloc function to
return a symbolic representation of the rax register.

For macro reconstruction the variable names from the stack are needed. Initially, this
requires retrieving the variable names from the decompiler and applying the stack offsets.

The corresponding function is shown in [Listing 17]
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def get_variables_remote(func):
ifc = ghidra.app.decompiler.DecompInterface()
options = ghidra.app.decompiler.DecompileOptions ()
ifc.setOptions(options)
ifc.openProgram(func.getProgram())
monitor = ghidra.util.task.ConsoleTaskMonitor ()
res = ifc.decompileFunction(func, 60, monitor)

high_func = res.getHighFunction()
1lsm = high_func.getLocalSymbolMap ()
symbols = lsm.getSymbols ()

offset_mapping = dict()

# NOTE high variables offset could overlap
for symbol in symbols:
hs = symbol.getHighVariable()
if hs == None:
continue
instances = hs.getInstances()
for instance in instances:
name = instance.getAddress().getAddressSpace() .getName ()
if not name == "stack":
continue
offset_mapping[instance.get0ffset()] = symbol.name

return offset_mapping

Listing 17: Getting stack addresses from the variables in the decompiler

Following this, the register containing the macro pointer needs to be found. After
manually analyzing the decompiled Ghidra code print only uses one single argument as
a parameter. Thus, it stores the pointer to the macro in rdi. Meanwhile, format_inner
requires two arguments, storing the macro pointer in rsi as the second argument and as
the first argument it stores the pointer to the string. After determining the parameters for
the call, it became necessary to analyze the memory layout for the passed structure. In
order to extract the memory information needed ANGR offers this functionality by reading
uint64_t (unsigned integer) values stored at calculated_offset location in memory.
Since the values stored are concrete and not symbolic, the res variable gets assigned with
the actual values and finally saved in the .csv file as shown in [Listing 18
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with open('memory_dump.csv', 'w') as f:
stack_offset = s.regs.rdi
for i in range(0, 0x1000 // pointer_size):
calculated_offset = stack_offset + pointer_size * i
calculated_offset = calculated_offset._model_concrete.value
res = s.mem[calculated_offset] .uint64_t.concrete
print (f'Ox{calculated_offset:016x},0x{res:016x}', file=f)

Listing 18: Memory dump layout

The start of the stack is shown in Since there was no way of mapping the
memory dump to the Rust source code in [Listing 19]at first glance, a couple of assumptions
were made. Proving these assumptions was done by trial and error. A self-written binary
was used to try out different ways to call the println! macro with various parameters
and watching which dump values change accordingly to the code. By following these
assumptions and the stack memory addresses in the concrete memory calculated by
ANGR, the macro input can be derived from stack memory. Other than just deriving the
string, format macros can take in more parameters like the precision which also can be
detected by looking into the stack memory.

Ox07fffffffffefe80 num_format_info

0x07fffffffffefe78 format_info

0x07fffffffffefe70 | 0x0000000000000001 | num_formatters

0x07fffffffffefe68 | OxO7fffffffffeffcO | fmt_ptr

0x07fffffffffefe60 | 0x0000000000000002 | [&str].len()

0x07fffffffffefe50 | 0x0000000000154c90 | [&str]

Table 4.1.: Start of memory dump

The figure illustrates a memory layout with memory addresses on the left and their
corresponding contents in hexadecimal format on the right. The color-coding is used to
group related pairs of memory addresses and contents together, providing a visual aid for
explanation. The first memory address (starting from the bottom) contains the content
of a string pointer address, followed by a number representing the number of constant
string parts. The first value of the next pair points to the Fmt<£32> function, followed
by a count of formatters. Lastly, the final value points to a slice containing non-default
format specifiers.
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In the context of the Fmt<f32> function, there is a pointer to its parameters and the
function address itself shown in [Table 4.2] This data was collected by double checking
the address in Ghidra and comparing them to the memory dump generated.

Ox07fffffffffeffc8 function_addr

0xO07fffffffffeffcO parameter_ptr

Table 4.2.: fmt function in memory

The Fmt<£32> function is associated with a set of parameters. These parameters, namely
precision, width, position, fill, and flags, each occupy 4 bytes of memory space, along with
an alignment parameter. The Rust library’s source code [46, 47| in , makes
use of a placeholder struct to hold these six relevant parameters. Furthermore, the code
utilizes enumerations - such as the Alignment enum for alignment, and Count enum for
precision and width - to store values. If a value for width or precision is specified, they are
displayed as usize. Otherwise, they are Implied values, which means they can contain
random old data.

pub struct Placeholder {
pub position: usize,
pub f£ill: char,
pub align: Alignment,
pub flags: u32,
pub precision: Count,
pub width: Count,

}

pub enum Alignment {
Left,
Right,
Center,
Unknown,

}

pub enum Count {
Is(usize),
Param(usize),
Implied,

}

. v

Listing 19: Source code of the placeholder parameters

For ANGR to extract and make use of these values the following struct in [Listing 20
stores them. Different from the Rust library source code [46, 47| there are the flags
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stored and the extra padding variable. This variable is needed because the alignment
itself is only 1 byte long and 7 additional bytes are needed because structs are generally
aligned to 8 bytes.

struct placeholder {
uint64_t precision_flag;
uint64_t precision;
uint64_t width_flag;
uint64_t width;
uint64_t position;
uint32_t fill;
uint32_t flags;
uint8_t alignment;
uint8_t paddingl[7];

Listing 20: Memory struct in ANGR

Now all the necessary values are stored inside the struct and in order to gain access to the
values the memory state needs to be dereferenced. After obtaining these locally stored
values are utilized to recreate the call of the format! and println! macros in Rust. As
an example a small program was written in Rust which invokes both function calls as
shown in Running the script produces the following output in
Not only was the script successful to reconstruct the format strings but also additional
parameters like precision and width could be fully restored.

println! ("Employee ID: {}", local_128)

format_inner! ("Name: {} Age: {} Workplace: {}", local_158, local_120, local_140)
println!("Salary: ${:.2}", local_120)

format_inner! ("Height: {:13.5} Weight: {:.9}", local_118, local_118)

Listing 21: Proof-of-Concept of recreating format! and println! macros

println! ("Employee ID: {}", self.id);

format! ("Name: {} Age: {} Workplace: {}", self.name, self.age, self.workplace);
println!("Salary: ${:.2}", self.salary);

format! ("Height: {:13.5} Weight: {:.9}", self.height, self.weight);

Listing 22: Source code of format and println! macro usage
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This chapter covers the evaluation of real-world Rust binaries. A combination of ten
widely-used Rust tools was selected to test the scripts. As described in the
developed Ghidra scripts try to simplify the reverse engineering process of Rust binaries.
In order to evaluate the string detection scripts, the number and length of detected strings
is compared against the strings found by Ghidra and by Ghidra’s own RustStringsAnalyzer
versus the number of strings detected after running the scripts. To ensure that the string
scripts are architecture-independent they must run on the same binary across different
architectures. For recreating macros the script currently supports print!, println!, and
format!. To validate and evaluate the script, it will be executed on real-world binaries
and the results will be thoroughly documented.

5.1. Setup

In order to evaluate the string analysis techniques in Ghidra two different versions were
used. The main focus was to test the scripts on Ghidra v10.3.2, the version they were
developed on. Additionally v11.0.1 was also used which introduces Ghidra’s own Rust-
StringsAnalyzer and RustDemangler. The setup process began with manually importing
the needed binaries into a new Ghidra project for both versions. The RustStringsAnalyzer
and RustDemangler in the recent Ghidra version were disabled to create a baseline
whether more or less strings get detected. Ghidra also has a headless analyzer [48] which
allows it to analyze binaries with command-line commands. It can create projects, import
binaries, and execute scripts, which is particularly useful for repetitive tasks. Therefore,
basic shell scripts were developed accepting the project path, name, and script path
as arguments. Additionally, the headless analyzer allows keeping the project read-only,
allowing analysis without modifying the underlying project. The data extracted from the
binaries included the number of strings before and after script analysis, as well as their
lengths. This information is saved as a .csv file and processed using Python scripts to
generate histograms and tables that illustrate the impact of the scripts. The baseline
values from the new Ghidra version without the RustStringsAnalyzer and RustDemangler
matched the values from the old version with no difference being visible in the graphs.
Afterwards, in the new Ghidra version the new analysis scripts were enabled to get the
new baseline values to compare against in the tables.
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5.2. Comparison of Script Performance

To validate the effectiveness of the scripts finding strings within binaries, ten widely-used
command-line executables were chosen. These included bat, btm, dust, exa, fd, procs,
rg, starship, tldr and tokei (linked in. By using the file command it was
possible to check if the binary was stripped of symbol and debug information. Since
most real-world binaries are typically stripped to reduce file size and make it harder
to analyze or exploit vulnerabilities, this thesis focused on stripped binaries to test the
scripts against. Five binaries from the collection were stripped: bat, btm, starship, ripgrep,
and dust. Additionally, the difference between the stripped and non-stripped binaries is
evaluated in regards to the analysis scripts of this thesis.

shows the average string count calculated by our scripts relative to the baseline
for all binaries. The process involved running both dynamic and static scripts on each
binary, extracting the string count, and then dividing the result by the baseline of strings
obtained solely by Ghidra’s auto-analysis. The resulting values were then plotted on
a graph. The goal is to find a representative example that clearly shows the script’s
functionality and effectiveness. Two significant binaries score higher than the rest. Dust
with having around 19 times more strings than Ghidra’s auto-analysis alone and ripgrep
by approximately 17 times. In contrast, bat, exa, fd, procs, tldr, and tokei show only
minor improvements. Starship and btm experienced a noticeable boost in the total string
count.
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Figure 5.1.: Average string count relative to baseline for all binaries
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5.3. Comparison of String Count

After reviewing the graph, ripgrep seemed the most appropriate due to its popularity
and the fact that it recovers a lot of strings. The following graph in presents
the number of strings found in the binary based on the script being run. Ghidra by
default identifies approximately 400 strings, which is relatively low compared to other
available scripts. Ghidra’s own RustStringsAnalyzer finds about 2500 strings whereas
the static strings script locates around 5500 strings. The dynamic script alone found
about 2000 strings. An important point is that combining both static and dynamic string
analysis resulted in the detection of more strings than the RustStringsAnalyzer. However,
the dynamic script generates a greater number of false positives due to checking the
instructions directly and possibly finding useless data that still matches the pattern.
Additionally, the dynamic string code is designed to avoid replacing strings that were
already defined. Therefore, using the static string scripts to clean up the defined data
after the dynamic script should in theory lead to better results. Nevertheless, the graph
shows that the order of script execution does not have a big impact on the overall number
of strings detected.
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Figure 5.2.: Number of strings found on stripped binary

illustrates the results when performing an identical analysis to

on non-stripped binaries. It shows that the non-stripped version had a higher overall
string count due to the inclusion of symbol and debug information. What is interesting
here is that the RustStringsAnalyzer discovers more strings than the dynamic script.
One reason for this could be that the RustStringsAnalyzer script does not have an
instruction interval of where the length of the string needs to be encoded. The dynamic
script looks one instruction before the string pointer and five afterwards. However, the
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RustStringsAnalyzer continues searching until it can find a length which is not negative,
zero or smaller than the max length. When trying to implement it this way in the
dynamic script, the dynamic script detection resulted in many unrelated data fields
getting detected as strings. Most of the strings were found by the static script and by
running both scripts the total count got slightly increased. Despite the difference of
stripped and non-stripped binaries, the execution order of the scripts also has an effect
on the number of identified strings. This is due to the fact that the dynamic script is
designed to avoid the replacement of strings that have already been defined.
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Figure 5.3.: Number on strings found on non-stripped binary

The length of the undetected string from is not explicitly encoded in the
instruction sequence of the program. This information for this specific string is only found
in the .rodata section. Therefore, when running Ghidra’s RustStringsAnalyzer which
takes a similar approach to the dynamic script by only looking for strings with length
and pointer in the instruction operands, the string cannot be detected. However, the
static string script inspects the .rodata section directly to search for the string’s content
and associated length, allowing detection and string definition as shown in

Figure 5.4.: Undetected string from Ghidra’s RustStringsAnalyzer
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Figure 5.5.: Detected string with static string script

5.4. Comparison Across Architectures

The scripts were initially developed and tested on x86_64 architecture to develop a
first prototype. The next step was to adapt the architecture specific script making it
architecture-independent to check the script’s adaptability and effectiveness in handling
binaries with different instruction sets and hardware platforms.

compares the architecture-specific script against the refactored independent
script on a stripped ripgrep binary. Both scripts were tested on Ghidra v11 and with the
RustStringsAnalyzer and RustDemangler turned off. It is noteworthy that the architecture
independent script identified more strings in total than the architecture-specific script.
This could be due to the fact that the architecture-specific script hardcoded the instruction
names instead of searching for the according pattern (string pointer with a close length
encoding) in the disassembly.
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Figure 5.6.: Different versions of dynamic script on x86_64 architecture

Ripgrep [49)] has its source code publicly available on GitHub. By cloning the repository
it was possible to compile the code across multiple architectures, including armv7, and
aarch64 for evaluating the scripts. The binaries were imported in Ghidra with the
RustStringsAnalyzer and RustDemangler disabled. Afterwards, the shell scripts for
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running the static string script and dynamic script were performed on all three binaries.
Lastly, the three binaries were reimported with Ghidra’s full analysis enabled and the
data was extracted for testing how well the RustStringsAnalyzer script performs across
architectures.

The three diagrams below visualize the number of strings found across different archi-
tectures. An evaluation of the data in provides evidence that the number of
strings returned by Ghidra’s RustStringsAnalyzer varies by architecture. The most strings
were discovered on the x86_64 architecture, followed by armv7, and lastly aarch64. One
reason for this could be that Ghidra’s RustStringsAnalyzer follows a similar approach
like the dynamic string script. The script searches for string structures in the binary by
creating an iterator that traverses the program address space and returns instances of
string data. For each string, it calls recurseString to recursively split the string into
slices with the correct length.
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Figure 5.7.: Architecture-dependent Ghidra RustStringsAnalyzer

Additionally, the dynamic script also identifies varying numbers of strings across different
architectures as shown in This may be due to the fact that "dynamic" strings
store the string pointer and length directly in the instructions, which can vary across
different architectures. In conclusion, since both scripts rely on how the string data is
encoded in the instruction, their performance may not be entirely reliable. Instead, the
static string scripts only search for string structures stored in the .rodata section which
stays similar across different architectures. Thus, resulting in a more reliable script across
architectures as shown in
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5.4. Comparison Across Architectures
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Figure 5.8.: Architecture-dependent dynamic string script
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Figure 5.9.: Architecture-independent static string script
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5.5. Comparison of Length Distribution

Simply evaluating the total number of strings is not enough to show the validity of the
script’s results. For a more detailed analysis, the length of each string found in the
stripped ripgrep binary was extracted. The goal is to analyze the distribution of string
lengths in the binary, evaluating whether the majority of strings are shorter or longer.
This data was collected for Ghidra’s analysis both with and without the Rust analyzers
enabled. The developed scripts were run without Ghidra’s Rust analysis activated. The
reason for this evaluation is that if the binary contains unusually long strings, this may
indicate that the scripts failed to correctly split existing strings into shorter single strings.

The boxplot from presents the distribution of string lengths within the
ripgrep binary. Each boxplot displays the range and distribution of the string lengths,
with outliers marked separately. Ghidra’s auto-analysis shows a broader distribution of
string lengths with many extremely long strings. For example, the third quartile shows
that 25% of the strings exceed a length of roughly 270, which contrasts to the static
string representation, where 25% only exceed a length of 70. This suggests that in the
default analysis of Ghidra, 75% of the strings are shorter than 270, while in the static
representation, the majority are shorter than 70.

In contrast, the second plot enables Ghidra’s own RustStringsAnalyzer and shows a shift
towards shorter strings, with 75% of the strings below approximately 100. This indicates
a bias towards shorter strings over longer ones. Despite this distribution, the plot still
reveals the presence of numerous outliers, which represent a significant number of long
strings that have not been split.

The static string effectively splits extremely long strings, eliminating those above 700.
In contrast, the dynamic string script mirrors Ghidra’s default string analysis to some
extent, albeit producing slightly shorter strings than Ghidra’s default output. Although
this script is effective in splitting some very long strings, it does not address all outliers to
the same extent as the static script. Nevertheless, its ability to manage and split longer
strings represents an improvement over Ghidra’s default functionality.

Both static and dynamic script representations show a high count of short strings but
they are also significantly higher in count compared to Ghidra. The static string script
identifies the shortest string length. Overall, these analyses demonstrate a shift towards
shorter string lengths in subsequent representations, with varying degrees of success in
dealing with outliers and splitting up extremely long strings.
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Figure 5.10.: String length distribution of scripts in comparison with Ghidra

The string search algorithm was designed to skip strings that were already defined at an
address. Running one of the two scripts could result in more or fewer strings being found
in total due to the already defined strings from the first script being run. Additionally,
the dynamic script could sometimes create strings that were longer than they actually
are because of how the information was encoded in the instruction operands. If the string
was also stored in the .rodata section the static string would redefine the string with the
new length. This sequence could potentially result in having more shorter strings than
the other way around. To determine whether the number of strings found as well as if
the string lengths would change based on the order in which the scripts are executed,
both scripts were tested on the same binary in different orders.

The evaluation of the data results in Overall, there is a slight difference in
the outcome depending on the execution order. However, the assumption that running
the scripts in the following order: dynamic and then static produces more shorter strings,
does not fully hold since reversing the order identified more strings with lengths around
200. It is important to mention that there are no outliers when using the static string
script to clean up. Nevertheless, which order is better depends on the use-case as well as
the binary.
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5.6. Comparison of Baselines

As mentioned before, real-world binaries are often stripped of symbol and debug informa-
tion, so this thesis selected five stripped binaries for the following analysis. Each stripped
binary was manually imported into Ghidra with the Rust analysis feature disabled.
Afterwards, the headless analysis scripts were executed to run the scripts and extract the
string data from the binaries. The process was then repeated, this time enabling Ghidra’s
Rust analysis before running the headless scripts again.

To establish a baseline for evaluation Ghidra’s auto-analysis without the use of additional
scripts was used. This baseline provided a reference point for evaluating the effectiveness
of the scripts. To measure the performance of the scripts against the baseline, the outcome
of the script was divided by the baseline. This calculated factor represents the performance
of the scripts in increasing the number of strings identified by Ghidra’s auto-analysis
alone. For instance, a factor of 1.5 indicates a 50% increase in string discovery compared
to the baseline. This analysis was conducted twice, once with Ghidra’s Rust analysis
feature disabled and once with it enabled.
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The first sub-table given in compares the baseline string counts obtained solely
through Ghidra’s auto-analysis to the string counts increased by the use of the static
script. The factor column measures the increase in string detection by the static script
compared to Ghidra’s baseline. Notably, dust and ripgrep have significant improvements,
with factors of 16.73 and 12.96, respectively, proving a clear improvement in string
detection with the use of static scripts. Compared to other binaries, bat showed a slight
improvement in string detection by a factor of 2.32. Nonetheless, btm and starship
displayed a significant increase in the number of strings, approximately six times more
than Ghidra’s auto-analysis alone. In short, the effectiveness of the static scripts is visible
in the significant improvements observed across different binaries.

Similarly, the second sub-table compares the baseline string counts obtained via Ghidra’s
Rust analysis to the total number of strings gained through the use of static scripts.
Enabling Ghidra’s Rust features results in the discovery of a large number of the strings
available. Therefore, when combining it with the static script, the factor which measures
the improvement in string detection relative to Ghidra’s baseline alone seems to be lower.
This implies that Ghidra’s Rust features already boost string detection, reducing the
relative improvement achieved by the static string scripts alone. Thus, although the static
scripts remain effective in general, their impact is reduced when Ghidra’s Rust features
are enabled.

H Name  Baseline Static script + baseline Factor H

bat 2601 6022 2.32
btm 662 4236 6.40
dust 198 3313 16.73
ripgrep 408 5289 12.96
starship 710 4265 6.00

(a) Ghidra baseline comparison

H Name  Baseline Static scripts 4+ baseline Factor H

bat 3734 6832 1.83
btm 2215 5368 2.42
dust 925 3764 4.07
ripgrep 2468 6745 2.73
starship 3955 6426 1.62

(b) Ghidra with RustStringsAnalyzer + RustDemangler baseline com-
parison

Table 5.1.: Comparison of static string baseline
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The second table in compares the baseline string counts collected from Ghidra’s
auto-analysis alone to those extended by the developed dynamic scripts. Here ripgrep and
starship with factors of 4.34 and 4.35 experience almost the same improvement. Similarly
dust shows a significant increase in the number of strings, roughly three to four times
more than Ghidra’s auto-analysis. In contrast, bat shows only minor improvements here.

The sub-table compares Ghidra’s baseline with RustStringsAnalyzer and RustDemangler
to the dynamic scripts. Compared to the first sub-table with only the dynamic scripts
executed, enabling Ghidra’s Rust features only results in a slight increase in string
detection, as indicated by the factors in this sub-table remaining close to one. While
some binaries, such as dust and starship, show slightly higher factors, suggesting a minor
improvement, the overall impact of the scripts in addition to Ghidra’s Rust features
appears limited.

H Name  Baseline Dynamic scripts + baseline Factor H

bat 2601 3487 1.34
btm 662 1611 2.43
dust 198 726 3.67
ripgrep 408 1769 4.34
starship 710 3085 4.35

(a) Ghidra baseline comparison

H Name  Baseline Dynamic scripts + baseline Factor H

bat 3734 4029 1.08
btm 2215 2371 1.07
dust 925 1085 1.17
ripgrep 2468 2710 1.10
starship 3955 4520 1.14

(b) Ghidra with RustStringsAnalyzer + RustDemangler baseline compari-
son

Table 5.2.: Comparison of dynamic string baseline

The last table in compares the baseline string counts collected from Ghidra’s
auto-analysis to those extended by running the dynamic script first and then the static
script. Comparing the factors to those from [Table 5.1] and [Table 5.2] it appears that the
factors from the combined script application tend to be higher than those obtained from
single-script applications. In the factor for dust is 16.73 and in it is
3.67. Combining these values results in a slightly higher number than the one in
but it still seems like the addition of both values. This pattern is also consistent with the
other binaries. It is also clearly visible that enabling Ghidra’s Rust analysis limits the
effectiveness of the scripts keeping the factors low compared to the first sub-table.
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H Name  Baseline Both scripts + baseline Factor H

bat 2601 6860 2.64
btm 662 5130 7.75
dust 198 3795 19.17
ripgrep 408 6631 16.25
starship 710 6374 8.98

(a) Ghidra baseline comparison

H Name  Baseline Both scripts + baseline Factor H

bat 3734 7140 1.91
btm 2215 5558 2.51
dust 925 3912 4.23
ripgrep 2468 6979 2.83
starship 3955 6987 1.77

(b) Ghidra with RustStringsAnalyzer + RustDemangler baseline com-
parison

Table 5.3.: Comparison of both string baseline

5.7. Format Macros

During the development phase, a short test binary was written and used to validate and
verify that the code works. The transition to real-world binaries was intended but the
script was not specifically designed for such binaries. Nevertheless, the script was tested
on exa which was randomly selected from the available set of binaries. For the evaluation,
both the dynamic and static script were executed on the binary. After running the Java
script which whole purpose is to identify println!, print!, and format_inner! calls,
the code managed to obtain a total of two println! calls and six format_inner function
calls as shown in However, the execution of the Python MacroExplorer script
came across many difficulties while trying to reconstruct the macros.

format_inner 001ba2e4
format_inner 0014840a
_print 0014fe38

_print 00110e4d

format_inner 0014a47f
format_inner 00147f7d
format_inner 0014a402
format_inner 00110b63

Listing 23: List of macro calls found in the exa binary
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One problem encountered was that although the script managed to run through the first
call of format_inner, the printed outcome, shown in has the string duplicated.

[ format! ("invalid magic number{}invalid magic number{}", local_60, local_78) ]

Listing 24: Wrong function call due to duplicated string

Upon examining the decompiled code in Ghidra, it was found that the function utilizing
the format_inner call is called pad_string [50]. Further research into the original source
code of this function, revealed that the format! call did indeed generate an empty

“duplicate” string as shown in

fn pad_string(string: &str, padding: usize, alignment: Alignment) -> String {
if alignment == Alignment::Left {
format! ("{}{}", string, spaces(padding))

}
else {
format! ("{}{}", spaces(padding), string)
}
}

Listing 25: Source code of pad_string function [50]

Upon inspecting the address where Ghidra defined the invalid magic number string, it
was determined that the length of the actual string should have been zero. One possible
reason why Ghidra did not find or define this string is that it may have been invalid.
Ghidra marks strings only if they have been referenced somewhere and ignores if the
string has the necessary length information to do so. The static and dynamic scripts do
not delete already defined strings, but only split them up if needed. Therefore, it was
not possible for the developed scripts to recover the empty string. This was also tested
with Ghidra’s RustStringsAnalyzer which also resulted in Ghidra not defining the empty
string. To fix this, the current Python script was rewritten to check if the string length
was zero shown in . Otherwise, the corresponding string defined from Ghidra
at the address is returned.

The modified script was rerun, resulting in the correct output shown in This
is identical to the format! call from the pad_string source code.
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final_str = []
for i in range(num_strings):
if str_array([i].len.uint64_t.concrete ==
final_str.append('')
else:
string_address = toAddr(str_array[i].str.concrete)
string_value = getDataAt(string_address) .getValue()
final_str.append(string_value)

Listing 26: Fix to append an empty string if the length is zero

format! ("{}{}", local_60, local_78)

Listing 27: Correct function call after implementing the fix

Moving on to the next function call the script failed to terminate. After leaving the script
running for approximately two minutes it was terminated manually. The reason for the
script’s failure is unclear. The delay in reaching the desired function call may be due to
the large number of function calls that ANGR follows. Another reason could be that the
concrete return value destroys ANGRs exploration path, leading to the script running for
a long time.

The third and fourth call from the binary was println! which resulted in the script
throwing an exception due to failing to find a valid state. This error may have been
caused by Ghidra’s incorrect decompilation of the caller function, which was labeled as an
UndefinedFunction as shown in Furthermore, the print function is missing
parameters, possibly due to Ghidra’s failure to decompile the function correctly.

void UndefinedFunction_0014fe30(void) {
void *unaff_RBX;
long unaff_R14;
long *plVaril;
bool bVar2;
long in_stack_00000098;

std::io::stdio::_print();

Listing 28: Ghidra fails to mark caller function correctly
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The next call turned out to be another empty string which was correctly identified, as
shown in When compared to the source code from eza there are
two format! calls. The second one was reconstructed from the script but since the string
was invalid and empty, the Python script only appended the curly braces since these were
hardcoded. However, the first format! call resulted in the script crashing with the error,
that no valid state was found.

[ format! ("<{}>", local_cO) ]

Listing 29: Another correctly identified macro

let error_message = if let Some(path) = path {
format! ("<{}: {}>", path.display(), error)
} else {
format! ("<{}>", error)

};

Listing 30: Source code from exa

During the development phase of the ANGR script, when creating the state, there is
an option called ZERO_FILL_UNCONSTRAINED_MEMORY. This option replaces the unknown
memory from an uninitialized address to zero instead of an unconstrained symbol [51].
However, this option caused the script to fail to find a possible branch to get into the if
branch of the code. Removing this option from the script led to correctly extracting the
macro and string from the binary shown in [Listing 31

[ format! ("<{}: {}>", local_40, local_cO0) ]

Listing 31: Correctly identified macro after removing the zero-initialized option

The recent changes to the script have improved its ability to handle different calls within
the binary. For example, the last call previously terminated with an error showing an
invalid state. However, this issue was resolved by removing the zero-initialized option.
This fix led to the discovery of the format! call in the list which contained a non-empty
string. A comparison between the output of the script in and the source code
confirms that the script can successfully reconstruct macros.
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format! ("/usr/share/zoneinfo/{}", local_368)

Listing 32: Correctly identified macro after removing the zero-initialized option

format! ("/usr/share/zoneinfo/{}", {
if file.starts_with(':') {
file.replacen(':', "", 1)
} else {
file
}
b

Listing 33: format! macro call in the exa binary for comparison

After the implementation of the above changes, the script was run one more time to
see how well it performed now, and if there were any changes to the old results. The
modifications did not impact the outcomes of previous successful calls. However, calls
where the script crashed or failed to terminate now show different results. For instance,
the two format_inner calls which needed to be terminated manually crash with the

following exception in

ValueError: Exceeds the limit (4300 digits) for integer string conversion:
value has 9864 digits; use sys.set_int_max_str_digits() to increase the limit

Listing 34: ANGR error if script fails to terminate

Furthermore, there were inconsistencies of the script handling both print calls. The
first print call terminated without producing an error, but no output was printed. This
may have been due to the missing arguments in the print function within Ghidra. In
contrast, the second print call threw the same exception as the previous two discussed

format_inner calls, shown in [Listing 34
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6. Conclusion

To conclude, this thesis tried to close the gap in reverse engineering Rust binaries by
developing and evaluating string recovery and macro reconstruction scripts and methods.
The final results of show that the scripts provide useful information about the
functionality of Rust binaries as well as trying to make the reverse engineering process
easier. By developing scripts to reconstruct both static and dynamic strings, it was
possible to outperform Ghidra’s RustStringsAnalyzer which only tries to recover strings
which are encoded in the instructions of the Rust binary. Additionally, format!, print!,
and println! macros can be detected and reconstructed with the help of ANGR. While
it is possible to recover macros in general, the evaluation has also shown that this is
limited by two things: In order for ANGR to work properly, Ghidra has to produce
correct decompiled code; if the decompiled code is not correct, then ANGR can also not
correctly perform symbolic execution. Secondly, ANGR itself is not free of errors and
due to symbolic execution facing issues with path explosion, it might not terminate for
complicated parts in the code.

6.1. Future Work

Concerning future work, there are a large number of different areas in reverse engineering
Rust binaries that need further improvement. For example, developing scripts that can
handle more advanced macro structures and are robust against edge cases. Rather than
simply printing macro structures to the console, the ultimate goal is to display every
reconstructed macro structure directly in Ghidra’s decompiler interface. This can be done
by replacing the existing decompiled code by the correct macro calls or by including them
as code comments throughout the binary. By achieving this goal, the reverse engineering
process with tools such as Ghidra will become easier. In summary, it is important to
continue research in this field to overcome challenges related to reverse engineering Rust
binaries.
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A. Appendix

List of tools used for evaluating the effectiveness of the developed scripts:

bat: https://github.com/sharkdp/bat

btm: https://github.com/ClementTsang/bottom
dust: https://github.com/bootandy/dust

era: https://github.com/ogham/exa

fd: https://github.com/sharkdp/fd

procs: https://github.com/dalance/procs
ripgrep: https://github.com/BurntSushi/ripgrep
starship: https://github.com/starship/starship
tldr: https://github.com/dbrgn/tealdeer

tokei: https://github.com/XAMPPRocky/tokel
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